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Abstract

We consider data analytics workloads on distributed architectures, in particular clus-
ters of commodity machines. To find a job partitioning that minimizes running time,
a cost model, which we more accurately refer to as makespan model, is needed. In
attempting to find the simplest possible, but sufficiently accurate, such model, we
explore piecewise linear functions of input, output, and computational complexity.
They are abstract in the sense that they capture fundamental algorithm properties,
but do not require explicit modeling of system and implementation details such as
the number of disk accesses. We show how the simplified functional structure can
be exploited to reduce optimization cost. In the general case, we identify a lower
bound that can be used for search-space pruning. For applications with homogeneous
tasks, we further demonstrate how to directly integrate the model into the makespan
optimization process, reducing search-space dimensionality and thus complexity by
orders of magnitude. Experimental results provide evidence of good prediction qual-
ity and successful makespan optimization across a variety of operators and cluster
architectures.
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1 Introduction

With the ubiquitous availability of clusters of commodity machines and the ease of
configuring them in the Cloud, there is growing interest in executing data analytics
workloads in distributed environments such as Hadoop MapReduce and Spark. For
effective use of resources, a job needs to be partitioned into tasks running in parallel
on different workers. We will use the term worker to refer to a single processing unit,
i.e., a single physical or virtual core. Hence a c-core machine would support up to ¢
concurrent workers.

Given an analytics operator in a data-intensive computation, our goal is to min-
imize its total execution time by determining (1) a partitioning of its work, (2) the
number of tasks these partitions are mapped to, and (3) the degree of parallelism for
task execution. We equivalently refer to this execution time as the makespan of the
corresponding set of tasks.

In contrast to previous work, our goal is to include operator-specific partitioning
parameters into the optimization process. This is important, because user-defined data
processing operators are common in Hadoop and Spark dataflows, and it is often
difficult to determine which partitioning-parameter values will result in the fastest job
execution time. For illustration, consider a user who wrote a MapReduce program for
dense matrix multiplication based on the well-known block partitioning. It partitions
the left matrix into Bo-by-B; blocks, and the right one into Bj-by-B; blocks. (See
Sect. 4.4 for details.) In addition to number of tasks and degree of parallelism during
execution, the user now also has to choose the best values for By, By, and B;. To do
so with state of the art approaches, she essentially had two options.

First, she could train a blackbox machine learning model to predict makespan from
a variety of features [2], including the block sizes, input size, output size, number of
tasks, degree of parallelism, task size variance, and so on. This approach is convenient
for the user, because it does not require deep understanding of distributed system
interactions. The model can be trained automatically on labeled data, obtained from
an appropriate benchmark that measures makespan for a variety of configurations.
Unfortunately, finding the minimum-makespan configuration in a blackbox model
requires exhaustive trial-and-error probing of the model. While a single prediction
might only take a microsecond, exploring all combinations of just 10 different values
for 10 parameters would take 109 microseconds, i.e., almost 3 h.

Second, she could explore DBMS cost models, which estimate the cost of an opera-
tor as the sum of the number of operations performed, weighted by per-operation cost.
These models require a fairly complete understanding of system-level details, e.g., the
number of random and sequential I/O performed. Those depend on implementation
details of the underlying system and are difficult to specify for makespan estimation in
distributed systems. Furthermore, DBMS cost models do not take resource bottlenecks
into account.

To address the shortcomings of existing techniques, we propose to generally fol-
low the machine-learning approach, but to do so with the simplest possible model
type. The model’s structure should enable fast makespan optimization, while at the
same time being flexible enough to capture a distributed execution “sufficiently” accu-
rately.
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Arguably the simplest approach with any hope for being practically useful is to
estimate task execution time as a linear combination of its input size (I), output size
(0), and computation complexity (C) as co 4+ c¢1I 4+ 20 + ¢c3C. The parameters
intuitively represent fixcosts (co), data transfer rates (c1, ¢2), and processing speed
(c3). This model is abstract in the sense that it reflects algorithm properties, not
implementation or system aspects. Since the parameters are estimated based on training
data obtained from actual benchmark executions on the same cluster, they represent
averages over a large number of low-level processing steps and thus automatically
account for underlying processing complexities [5].

To use an abstract model like co + ¢1/ + ¢20 + ¢3C for makespan optimiza-
tion, the user has to express I/, O, and C as functions of the partitioning parameters
of interest. This requires human expertise, but is strictly easier than for traditional
DBMS cost models. Note that the resulting function might not be linear in the parti-
tioning parameters. Consider the first map phase of matrix multiplication, for which in
Sect. 4.4 we derive map task duration as ¢y, +c1, (NoN1+ N1 N2) /n1+c1,(NoN1 Bo+
N{N>Bgy)/n;. All that was needed to obtain this formula were (1) input size per
task ((NoN1 + N1N3)/n1) and (2) output size and computation complexity per task
((NoN1 B2 + N1 N2 Bg)/n1). We believe that this represents a relatively small burden,
because the program designer has to understand the algorithmic impact of partitioning
choices anyway, in order to design an effective distributed program.

This relatively small additional effort for the programmer to reveal high-level algo-
rithm properties to the optimizer pays big dividends in optimization time, compared to
simply providing the operator as a blackbox. For example, matrix multiplication has
10 partitioning parameters (Sect. 4.4), requiring exploration of a 10-dimensional space
of combinations. Our approach reduces complexity to three dimensions, because for
the other seven our model can derive optimal settings analytically. Assuming 10 values
explored in each of those 7 dimensions, this reduces optimization cost by a factor of
107!

But can an abstract makespan model capture the complexities of a distributed
system, in particular task interactions and resource bottlenecks? Fortunately, any
function can be approximated with multiple linear pieces. Our experiments show that
for a piecewise linear model (Fig. 1), it only takes a small number of pieces to be suffi-
ciently accurate. The reason for this lies in the way resources are consumed. Consider
a network link that can transmit data at a certain rate. Ideally, transmitting twice the
amount of data should take twice as long. However, in practice greater competition for
resources typically increases overhead cost and hence the effective transmission rate
may drop. Figure 2 shows a typical observation for a MapReduce program, where the
time for shuffling data across the network increases more rapidly after about 600MB.
The model can capture this behavior by using a different slope for larger data.

Piecewise linear models also offer two additional benefits. First, the program
designer does not need to specify the dependency of I, O, and C on the partition-
ing parameters overly accurately, as long as the formula captures the dominating
terms. For instance, for a program whose computation costis C = nlogn +n + /n,
it suffices to specify C = n log n—something the programmer is familiar with from
traditional O-notation complexity analysis. The only downside is that the model may
potentially need more linear pieces to be sufficiently accurate. As a second benefit, the
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model pieces provide insights about bottlenecks. For example, for the reduce phase
of sorting (Sect. 4.3), model training for a cluster of quad-core machines determined
that three pieces were needed when all four cores were used. Input coefficient ¢ had
value 5.5, 9.9, and 12 for “small”, “medium”, and “large” input size, respectively. For
executions using only two cores per machine, the model created only two such pieces
with ¢1 equal to 4.4 for “small”, and 4.9 for “large” inputs. Hence it automatically
captured the I/O-dominated nature of sorting. With four cores competing for data
access, larger input size stresses /O and memory bus more than when only two cores
are used.
This work makes the following main contributions:

1. We propose a linear makespan model for the rounds of a data-intensive com-
putation (Sect. 2) and show how it can account for bottlenecks through domain
partitioning into a piecewise linear model. For makespan optimization, we show
how model structure can be exploited to prune the optimization-parameter search
space (Sect. 3).

2. In Sect. 4, we introduce an instantiation of the general model for problems with
homogeneous tasks. It enables us to prove even stronger results, significantly
reducing the dimensionality of the optimization-parameter search space and thus
decreasing optimization cost by orders of magnitude.

3. We present a framework for model training in Sect. 5.
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Fig.3 Distributed data-intensive computation as sequence of rounds, consisting of shuffle followed by local
computation. Each box in a column symbolizes a worker

4. We show through extensive experiments (Sect. 6) that the proposed models are
sufficiently accurate, i.e., capture the relative makespan behavior for different
optimization-parameter settings. This is explored for essential data analytics oper-
ators (join, sort, matrix product).

Related work is discussed in Sect. 7, and we conclude in Sect. 8.

2 General model

Despite the diversity of analytics operators, at the system level every distributed
data-intensive computation relies on the same basic building block: local data process-
ing on multiple worker machines in parallel, preceded by global data exchange to get
the appropriate input to each worker. In line with nomenclature of modern big-data
processing platforms Hadoop MapReduce and Spark, we will refer to the latter as
shuffle phase; and we will use the term round (of computation) for the building block
(see Fig. 3). We are interested in the simplest possible, but “sufficiently accurate” cost
model for the running time of a round, which we refer to as makespan model.

Our proposed function for modeling running time 7" of a round is defined as

T = Bo+ Bi1I + Bod + B3O0m + BaCr + B5Tm. (D

Bo accounts for the fixcosts of starting up the round, which can be significant in a
distributed setting. Term S1Z captures the impact of the fotal amount of input Z to
be shuffled and transferred to the workers. For the remaining four terms, notice that
computation on the different workers happens in parallel. Hence makespan, in contrast
to traditional DBMS cost optimization, is determined by the most loaded worker, a.k.a.
“straggler”. Consequently, the model does not depend on the total input, output, and
computation on all workers, but only on the input (/,,), output (O,,), and computation
(Cyn) on that one straggler. Term Bst,, accounts for the fixcost for starting up and
shutting down the t,, tasks assigned to this worker. This and other important notation
is shown in Table 1.
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Table 1 Important notation Variable

Meaning

w Number of worker nodes in the
cluster

p Degree of parallelism during
distributed execution

n Number of tasks

V4 Set of operator-specific parameters,
controlling its partitioning

7 0,C Total input size, output size, and
computation cost of a round of
computation

Ly, Om, Ciu, Ty Input size, output size, computation
cost, and number of tasks assigned
to the most loaded worker

R, S Join input relations

A Join attribute and set of its possible
values

Ry, Sa R, ={reR:r.A=a},
Sqg={s€S:s.A=a}

Ta,Sa Number of partitions for input R,

and Sg, respectively; a € A

2.1 General practical aspects

Model training happens offline, i.e., before the model can be used for optimization
of a given job. It follows the standard approach of supervised learning in general, and
linear regression in particular. First, a suite of benchmark jobs is executed, covering
a variety of values for model variables Z, I,,, O,,, Cy,, and t,,. For each job, round
execution time 7 is recorded, resulting in a 6-tuple (Z, I,, O, Cpy, T, T). Given a
set of such tuples, standard least-squares estimation produces the best-fit values of the
B-coefficients. Due to the small number of variables, overfitting is not a concern and
hence we do not apply regularization. (Our experiments confirm similar prediction
accuracy on both training and withheld test data.)

For more details about the model training process, refer to Sect. 5. Training of piece-
wise linear models is analogous, with the additional step of data-driven determination
of a domain partitioning when needed (see Sect. 2.2).

Model use In order to use the proposed model, the programmer has to express variables
Z, Iy, Op, Cpy, and 7, as functions of the partitioning parameters she would like to
tune. We demonstrate this for three diverse operations below, showing that often the
model can also be simplified. It will become clear that our abstract model is much
easier to determine than a corresponding DBMS-style cost model based on low-level
operations.

In addition to the automatically learned S-coefficients and the user-provided func-
tions for variables Z, I,,, O, C,, and t,, the optimizer only needs traditional
selectivity estimation, identical to the same functionality in a DBMS, in order to
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estimate intermediate result size for data processing pipelines consisting of multiple
rounds. Then it can estimate the values of Z, I,,,, O,,,, C,,,, and t,,, for each round, and
simply plug them into Eq. 1 to estimate round time.

Model realism Will this abstract model be sufficiently accurate to be useful? Indeed, it
is more powerful than it may at first seem. To see this, consider the following possible
concerns.

The shuffle phase does not transfer all data in bulk before the local computation
phase—both are usually interleaved. This means that after completing a task belonging
to around, the worker might later process another task of the same round. In that case,
the worker requests input data for the new task after the completion of the previous
one. Equation 1 still applies, because, mathematically, it simply captures the fact that
total input Z to a round is essential for capturing shuffle cost, no matter the actual
interleaving of data transfer and local computation. If data transfer is spread over
multiple waves of tasks, then the model might automatically determine a lower value
of B1, i.e., lesser impact of larger total input on makespan.

When input is not evenly balanced across workers, then total input Z might not
suffice to explain variations in shuffle time. In that case, term B, 1,, can pick up some
of the effects. An analogous argument applies to other low-level system operations.
For instance, a map task might have to spill buffer content to disk. The corresponding
reading and writing time will be accounted for by the 7, and O,, terms. When larger
output causes more frequent buffer spilling, the model can capture this automatically
by learning that a larger B3 value is needed for a model piece covering larger O,
values. (See discussion of piecewise linear models below.) In general, since the 8-
parameters are estimated from actual benchmark executions, they represent averages
over a large number of low-level processing steps. This agrees with recent results
by Duggan et al. [5], who showed that a single variable can account for underlying
processing complexities in their performance prediction approach.

A MapReduce combiner is treated like any other local computation functionality
in a round. It affects the user-specified functions for O,, and C,,, as well as the value
of 7 for the following reduce phase.

We next discuss the two major challenges in making the linear model practically
applicable: accounting for interaction effects and determining 7,,, O,,, Cp,, and 1.

2.2 Accounting for task interactions and bottlenecks

Interaction effects occur when tasks executed in parallel on a multicore processor
compete for resources, e.g., memory bus and local disk(s). They also occur when
multiple machines compete for access to shared network links or switches, slowing
down data transfer and local computation. This can be captured by partitioning our
model into k > 1 ranges (po, p1l, (p1, p2],-.., (Pk—1, px] of degrees of parallelism.
Bottlenecks appear not only when multiple tasks compete for resources. The local
computation of a task might also get delayed by I/O wait time caused by its own I/O
operations, requiring different model coefficient values for different ranges of input
and output size.

@ Springer



418 Distributed and Parallel Databases (2019) 37:411-439

The result of partitioning the design space is a family of piecewise linear models,
each with its own combination of values for (8o, B1, B2, B3, Ba, Bs). We say that a
model covers the corresponding partition defined by a range of parallelism degrees (p),
total input size (Z), and input size (I,,;) and output size (O, ) on the most loaded worker.
The partitioning can be determined in a fully data-driven manner from the training
data, e.g., by minimizing the residual sum of squares [30] or by using a model tree [23].
For parallelism degree, we ensure that the number of cores per CPU is considered as
follows: For a cluster consisting of w/c c-core machines, all interval endpoints that are
multiples of the number of workers, i.e., all valuesin {i -w/c: i =1,2,...,c}, are
explicitly considered as possible split points for a parallelism-degree range. Intuitively,
these values correspond to a degree of parallelism of 1 to ¢ per physical machine.
Figure 1 illustrates the overall structure of the proposed models. It shows a stylized
example for the homogeneous task case, discussed in Sect. 4. For each round of the
computation, there is a separate piecewise linear model.

2.3 Estimating max load

Estimating I,,, O,,, Cp,, and 1, i.e., the input size, output size, computation, and
number of tasks on the most loaded worker can be challenging. If the number of tasks
in a round is less than or equal to the number of workers, w, then 7, = 1 and it suffices
to identify the “heaviest” individual task. When the number of tasks exceeds w, then
some workers will receive multiple tasks and 7,,, O,,, Cy,, and t,,, will depend on the
actual scheduling policy used for assigning tasks to workers.

Notice that schedulers in distributed data-processing systems like MapReduce and
Spark actively attempt to balance load at runtime by assigning tasks incrementally. In
particular, initially just w tasks will be scheduled—one task per worker. Only after a
worker reports completion of a task, will it receive the next. Hence when the number
of tasks is “sufficiently” large and load between tasks does not vary “too much”, then
each worker will receive a similar share of the total load. This implies that one could
estimate I, as total input divided by w, O,, as total output divided by w, and C,, as
total computation time divided by w.

Unfortunately, when task load is highly skewed, e.g., one of the tasks accounts for
half of the total load, then those averages would result in significant under-estimation.
We propose the following general technique for addressing this problem through
lightweight simulation. Given a set of tasks, one can simply execute the task assign-
ment algorithm used by the scheduler. Task running time is estimated using the model
parameters, i.e., for task i with input /;, output O;, and computation complexity C;,
the estimate is S21; + B3 0; + BaC; + Bs.

3 Makespan optimization using the general model
The structure of a linear model provides valuable insights about the importance of the

different terms. In particular, the larger the value of a coefficient, the greater the term’s
impact on makespan. In addition to insights, simple model structure can be exploited
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Fig.4 Relationship between partitioning parameters

to reduce optimization cost. We show this for the general model in this section, then
discuss even stronger results in Sect. 4.2 for operators with homogeneous tasks.

3.1 Search space exploration

The optimization-parameter search space consists of all combinations of possible val-
ues for the tuning parameters of interest. We focus on parameters controlling problem
partitioning into tasks, and their parallel execution:

— number of tasks: n,
— degree of parallelism during execution: p (p < w),
— aset Z of operator-specific parameters controlling problem partitioning.

Figure 4 illustrates the relationship between the parameters. Notice that changing
the value of a parameter z € Z may affect total input, output, and computation cost
of the round. For example, a more fine-grained partitioning may require additional
input duplicates. On the other hand, different values for n or p do not affect total
input size (Z), total output size (O), or total computational complexity (C)—they only
control how the different partitions are “packaged” into tasks and how many tasks are
executed concurrently, respectively. We will explain this in more detail for an example
in Sect. 3.3.

3.2 Search space pruning

The following lemma will enable us to limit the search space of operator-specific
parameters controlling problem partitioning, by establishing a lower bound for
makespan of a round. Intuitively, this lower bound corresponds to the (possibly
unattainable) ideally balanced load assignment where each worker receives the same
number of tasks and the same share of total input, output, and computation. The
min{p, n} term accounts for scenarios when the number of tasks (n) is smaller than
the degree of parallelism (p): then at most n of the p workers can receive a task.

Lemma 1 No matter how n tasks of a round with total input Z, total output O, and total
computation C are assigned to p concurrent workers, round time T is lower-bounded

= T o C
by T = po+ Bi1L+ Beamioar + Bmmppy T By T 65 min{np,n}'

Proof Let I;, O;, and C; denote input, output, and computation for task i, 1 <i < n.
ThenZ=3%7",1,0=>",0;,andC =Y "_, C;. This implies for the total load
induced by all tasks:
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D (Bali +B30; + BsCi + B5) = oI + B30 + PaC + Bsn.
i=1

The load on the most loaded worker must be greater than or equal to the average load
per worker, i.e., (82Z + B3O + B4C + Bsn)/p. Also notice that the “heaviest” task
even by itself will induce a load at least as high as the average over all tasks, i.e.,
(B2Z + B3O + B4C + Bsn) /n. The load of the worker receiving that task will therefore
be lower-bounded by the per-task average as well. This immediately implies the same
lower bound for the most loaded worker in the system (whose total assigned load is
at least as high as that of the worker receiving the heaviest task). Putting these lower
bounds together, we obtain

IBZIm + IBSOm + ,34Cm + IBSTm =
max {ﬁzf + B30 + B4C + Bsn BoT + B30 + BuC + Psn }
p b n 9

< B Z+B3O+B4C+psn

and hence T min{p,n}

, completing the proof of the lemma. O

Lemma 1 can be exploited for search space pruning as follows. For given task
number n and degree of parallelism p, we immediately obtain alower bound 7 based on
total inherent input size, inherent output size, and inherent computation of a round. The
inherent values are those for the unpartitioned execution of the operator. Partitioning
can never decrease them, but will typically increase them, e.g., require additional input
copies or additional computation steps for post-processing.

Whenever more fine-grained partitioning increases Z, O, or C, the corresponding
value of lower bound 7 will increase accordingly. Hence exploration of even more
fine-grained partitioning can be terminated as soon as the lower bound exceeds the
best makespan found so far. We illustrate this for joins in Sect. 3.3. Even when more
fine-grained partitioning does not increase the lower bound, it still provides valuable
information. Knowing that the best makespan found so far is within a small factor of
the lower bound, the user may decide to stop exploration early.

Note that when applying Lemma 1 to piecewise linear models, each piece could
return a different lower bound. The entire model’s lower bound is the minimum of
the per-piece lower bounds, over all pieces that could still be reached during the
optimization-parameter space exploration. (For instance, if application parameter set-
tings are explored in increasing order of total input size Z, then model pieces for
smaller input size ranges do not need to be considered for the lower bound.)

3.3 Example: equi-join

Consider equi-join R o< S = {(r,s) € Rx S : r.A =s.A}andlet R, = {r €
R:r.A=a}and S, = {s € S: 5s.A = a} be the subsets of tuples from R and S,
respectively, with join attribute value a. We will refer to R, U S, as the group for join
attribute value a. Then the equi-join can be expressed as R > S = | J Ry, x Sg,
i.e., the union of Cartesian products for each group.

acA
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Algorithm 1 : GreedyJoinPartition

Input: count statistics [|Rg|laea, [|Sallaca

Input: starting partitioning [(ry = 1, 54 = 1)]gea

Input: weight function weight

1: while termination condition not met do

2:  Increment the r, or s, that maximizes the ratio of benefit and cost

3:  // Benefit = load variance reduction when incrementing the corresponding r,; or sg
4:  // Cost = weight assigned by weight to the corresponding r, or s

5: Determine Z, I, and Oy, for the new partitioning
6.
7:

: Evaluate makespan model T’ = By + 81Z + B2Im + B3 O for the new Z, I, O
return partitioning [(r4, S¢)]lqea With lowest predicted makespan

For skewed input, some groups are significantly larger than others, causing load
imbalance and hence a delay in job completion. Skew can be addressed by splitting
large groups into smaller sub-groups, e.g., using rectangular partitioning. More for-
mally, the set Z of operator-specific partitioning parameters is defined as the set of
integer pairs {(rq, 54) : 7rq > 1,5, > 1,a € A}, or [(r4, Sa)]aca for short. The best
partitioning algorithm to date by Li et al. [19] explores Z by greedily incrementing the
rq, or s, that maximizes a benefit-cost ratio based on load variance reduction versus
additional input duplication due to subgroup partitioning (Algorithm 1). Note that the
algorithm relies on a simplified version of Eq. 1: There the term for C,, is omitted,
because computation cost is linear in input and output; and the B5t,, term collapses
into By, because the number of tasks is set equal to the degree of parallelism and hence
T, = 1.

[19] determines the values for Z, I,,, and O,, inline 5 by executing a load assignment
strategy such as random or LLD when packing the (sub) groups into tasks. Since the
makespan model in Algorithm 1 is a special case of our general model (Eq. 1), we
can leverage Lemma 1 to terminate the loop in a principled way. More precisely, it is
easy to see that with increasing r, and s,, the lower bound T will increase because
7 keeps increasing due to the additional input duplicates. Hence the while-loop can
be terminated safely (i.e., with the guarantee that no better makespan can be found
for more fine-grained partitioning) as soon as the lower bound exceeds the predicted
makespan for the best partitioning found so far.

4 Homogeneous tasks

This section presents analytical results that enable a significantly greater reduction
in optimization cost for a class of problems where all tasks have “similar” load. We
refer to these as homogeneous tasks. Task homogeneity occurs frequently in practice,
typically by design, because the programmer attempts to distribute load evenly over
the workers. For example, for distributed sorting, input is range-partitioned based on
(approximate) quantiles, so that each partition receives about the same amount of data.
Even for equi-joins, hash partitioning often distributes load fairly evenly as long as
groups are not “overly skewed.”
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4.1 Makespan model for homogeneous tasks

In the homogeneous model, each of the n tasks handles approximately 1/n of the
total input, output, and computation. Schedulers also can easily balance load across
workers, assigning about n/ p tasks to each of the p workers. When 7 is not divisible
by p, the most loaded worker will receive [/ p] of the tasks. Together with Eq. 1, we

obtain makespan o + B1T + [41 (B2Z + B39 + BaS + Bs).
We propose to further simplify this formula by dropping the first two terms, resulting
in the following makespan model H for homogeneous tasks:

n 7 O C
H= [——‘ <,32—+,33—+ﬁ4—+/35> (2)
)4 n n n

Notice that dropping terms does not make the model “less correct,” but simply reduces
its flexibility in capturing real-world behavior. For instance, By is a per-job fixcost,
while 85 represents per-task fixcost. Without Sy in the formula, the model can implic-
itly account for the effect of Sy by increasing 8s. The same applies to 81Z and 8,7 /n,
which both model a dependency of makespan on input Z. Our experiments will show
that the resulting models are sufficiently accurate for makespan optimization.

Analogously to the discussion in Sect. 2.2, we propose a piecewise linear model to
account for task interactions and bottlenecks. For Eq. 2, partitioning is considered for
parallelism degree (exactly as for the general model), per-task input size, and per-task
output size. Figure 1 shows a stylized example, with 1-dimensional lines as stand-in
for a plane in 3-dimensional space.

4.2 Makespan optimization for homogeneous tasks

The following powerful lemma enables us to derive the optimal task number and paral-
lelism degree for all applications with homogeneous tasks. Recall that in a piecewise
linear model, each piece covers some range (p;, py] for parallelism degree, range
(i1, ip] for input, and range (o;, op,] for output. Intuitively, the lemma states that par-
allelism degree should be set to the largest value possible for the linear piece, i.e., pp.
And the number of tasks, n, should be set to the smallest possible multiple of pj, that
is allowed based on the input and output range constraint for the linear piece. Note
that changing the number of tasks affects the input and output per task, i.e., for some
values of n, Z/n or O/n might not be inside range (i;, i5] and (o;, oy,], respectively. If
n cannot be set to a multiple of pj, then it should be set to the largest possible value
allowed for this linear piece. In the special case of the model being a single linear
piece, the lemma implies that both parallelism degree p and number of tasks »n should
be set to w. This makes perfect sense, because in the absence of non-linear behavior,
it is best to use all machines and to achieve this with the smallest number of tasks
possible (i.e., one task per worker).

_ I (@) C .
Lemma2 Let H = [%] (/32; + B3 + By + 55) be a makespan model covering
range (py, pnl for parallelism degree, range (ij, i,] for input, and range (o;, o] for
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output. Then H is minimized by setting p = py and n = min{[n;/pp] pn; nn}, where
n; =max{[Z/iy1; [O/on1} and nj = min{|Z/(i; + 1) |; O/ (o1 + D ]}.

Proof First consider the constraints on the number of tasks, 7, imposed by the range
for input and output size. For input, per-task input Z/n has to fall into range (ij, ip,],
which implies Z/i, < n < Z/i; and analogously O/o;, < n < O/o;. Together,
and taking into account that n has to be integer, this yields n € [n;, ny], where
n; = max{[Z/in]; [O/on1}, and np, = min{|Z/@@; + 1)]; [O/(o; + 1)]}.

To find the value of p that minimizes H = [n/p](B2Z/n+ B30 /n+ BsC/n+ Bs),
notice that none of the terms other than n/p is affected by the choice of p, and that
[n/p] in monotonically non-decreasing in p. Hence the optimal choice for p is the
largest value possible, i.e., p = pj,. This implies that we are left to determine the value
of n that minimizes H(p = pp) = [n/pr1(B2Z/n + B30 /n + B4C/n + Bs). To deal
with the ceiling function, we separate the problem into two cases.

Case 1 the range of possible values for n contains a multiple of p,. We show that
the smallest such multiple minimizes H. Formally, the case condition states that there
exists an integer k > 1 such that n; < kp, < ny. For any such k, consider all
n € [ng, ny] with [n/py] = k, i.e., all n that satisfy (k — 1)p, < n < kpy,. For
these values of n, let Hy = k(B2Z/n + B30 /n + B4C/n + Bs). Note that Z, O, and
C are not affected by the choice of n. The problem partitioning is controlled by the
operator-specific partitioning parameters in set Z; the choice of n only determines
how these partitions are grouped into tasks. As a consequence, Hy is minimized by
choosing the largest n in (k — 1) pp, < n < kpyp,ie.,n = kpy.

We now determine the optimal choice for k. For n = kpy,, H = [kpi/pn1(B2Z/
(kpp) + B3O/ (kpp) + B4C/(kpp) + Bs), which simplifies to H = (T + B30 +
B4C)/pn + kBs. Since (B2Z + B3O + B4C) is not affected by the choice of n, this
function is minimized for the smallest possible k, i.e., for k = [n;/py] and hence

n = [n;/pnlph.

Case 2 the range of possible values for n does not contain a multiple of pj. Then
there exists an integer k' > 1 such that (¢ — 1)py < n; < ny < k' p;,. This implies
[n/pn] = k' for all values of n in (n;, n;]. Like for case 1, this function is minimized
for the largest possible choice of n, i.e., nj.

To combine the solutions derived for both cases, note that in case 1, [n;/pp]pn <
ny. For case 2, the case condition implies [n;/pn] = [nn/pn]. Together with
[nn/pn] = np/pn (by definition of the ceiling function), this implies [n;/py] >
nn/pnr and hence [n;/pnplpn > np. Hence setting n = min{[n;/pn]pn; nn} will
minimize H, no matter which of the two cases applies. O

4.3 Example: sorting

Sorting plays a central role in data analysis, therefore we first demonstrate how to apply
abstract piecewise linear makespan models to the classic sort algorithm in Hadoop
MapReduce. Consider a user who is satisfied with the Hadoop defaults for the map
phase (one map task per file chunk, assign tasks to all workers), but would like to opti-
mize the reduce phase. She performs the following analysis to leverage our approach.
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Algorithm 2 : Find p, and n, that minimize H; of sorting

Input: N; M = set of models Hy, each covering some range (p;, pj] of parallelism degrees, range (ij, ij,]
of reduce-task input sizes, and range (o;, oj,] of reduce-task output sizes

1: for all m € M do // Model piece m covers (p;, ppl, (if. in], (07, op]

2:  t < time returned by model m when setting p, and n, according to Lemma 2

3:  Keep track of smallest ¢

4: Return minimal time ¢ and its (p,, n,) combination

Let N denote the size of the input data. The map phase only shuffles the input, hence
reduce phase input size is Z = N. Its output is the sorted data set, resultingin O = N.
Reduce tasks simply merge pre-sorted runs they receive from the mappers, therefore
C = N as well. Note that each reduce task is responsible for a range of keys. A
good implementation creates g ranges based on (approximate) g-quantiles, therefore
Z = {q} is the set of operator-specific parameters. Note that in order to generate 7,
reduce tasks, one simply sets ¢ = n,. With p, denoting parallelism degree in the
reduce phase, this analysis implies for Eq. 2:

ny N N N ny N
H=|—|(fo—+B—+Bh—+B)=|—|lcnten—]).
DPr ny ny ny Pr ny

where ¢,, = 5 and ¢,;, = B2 + B3 + Bs. Note how terms for variables with the same
function collapse in the linear model.

Overall, the user only had to select the homogeneous-task case and specify
7 = O = C = N. Then our approach automatically solves argmin, , H;. Using
Lemma 2, the optimizer immediately derives the optimal settings of p, and n, for
each piece of the piecewise linear model, selecting the pair with the lowest predicted
makespan as the global winner. Details are shown in Algorithm 2. Instead of exhaus-
tively exploring many (n,, p,) combinations, optimization cost is linear in the number
of model pieces. Using a larger number of linear pieces improves model accuracy, but
increases optimization cost—a directly tunable tradeoff.

To appreciate how the optimization process takes task interactions and bottlenecks
into account, consider first the special case where the model consists of a single linear
piece covering parallelism degrees (0, w], input size (0, x], and output size (0, x], for
some sufficiently large x > N. The for-loop in Algorithm 2 would be executed once,
returning p, = w and n, = min{w; N} = w. (Note that N/x < 1 and we assume
N > w, i.e., the number of workers does not exceed the number of input records.)
Stated differently, the algorithm determines that the problem should be partitioned
into w tasks—one per worker—and all tasks should be executed in a single wave in
parallel.

Now consider a cluster of w/2 dual-core machines and assume that when using
both cores on a worker, the memory bus on the worker slows down data transfer
rate from memory to core, causing the cores to wait for data. During model training,
our approach would automatically determine from the training data that two different
linear models are needed: one covering parallelism degree p, € (0, w/2], and the
other p, € (w/2, w]. The for-loop in Algorithm 2 now compares predicted makespan
for two configurations of (p;, n;): (w/2, w/2) for the model covering p, € (0, w/2]
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Reduce

Reduce

N2/ B2 Multiplication Job Aggregation Job

Fig. 5 Block-wise parallel matrix multiplication in 4 rounds. U is partitioned into 2 x 2 blocks, V into
upper and lower half, i.e., (Bg, By, B2) = (2,2, 1)

and (w, w) for the model covering p, € (w/2, w]. Stated differently, if the memory-
bus bottleneck leads to a severe slowdown, the optimal solution may be to use only
half of the cores—one per machine—and execute the reduce phase in a single wave
of w/2 concurrently executed tasks. This perfectly captures the intuition that if the
memory bus is the bottleneck (and not the CPU), then it may be better to only use one
of the two cores per machine.

4.4 Example: dense matrix product

Dense matrix multiplication represents a more challenging workload with high data
transfer costs, but also significant CPU load in some rounds due to the large num-
ber of multiplications and additions. Furthermore, matrix partitioning increases total
cost due to data replication. Dense matrix multiplication was identified as an impor-
tant computation problem in a recent UC Berkeley survey on the parallel computing
landscape [3].

Consider a programmer who implemented the classic block-partitioning algorithm
for dense matrix-matrix multiplication in MapReduce. As illustrated in Fig. 5, input
matrix U with dimensions Ny x N is partitioned into By - By blocks, each of size
No/Bo by N1/By; V (with dimensions N1 x N») is partitioned into B - B blocks,
each of size N1/B; by Ny/B>. Each block from U will be multiplied with the By
corresponding blocks from V, for a total of By - By - By block-pair multiplication
tasks. Note that each U block is duplicated B, times, each V block By times. The
data duplication (map: round 1) and local multiplication (reduce: round 2) form the
multiplication job (m-job). If B; > 1, then each block-pair product represents only
a partial result. In that case an aggregation job (a-job) needs to read and re-shuffle
these partial results (map: round 3) and sum them up (reduce: round 4).

Based on this understanding of the computation, the programmer now proceeds as
discussed for the sort program, expressing input, output, and computation in terms of
the partitioning parameters. In addition to p; and n;, i € {1, 2, 3, 4}—the parallelism
degree and number of tasks in each of the four rounds—this includes the operator-
specific partitioning parameter set Z = {By, B1, B>}. Note that n, = BoB1B>
according to the above analysis.

The resulting per-round makespan models are as shown below. For readability, we
present the version with collapsed terms for variables with identical functions. (Note
that rounds 3 and 4 are executed if and only if By > 1.)
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Hy = (c1y +c1,(NoN1 + N1 N2) /ny + c1,(NoN1 By + N1 N2 Bo) /ny) - [n1/p1],

NoN N|N; NoN- NoN| N:
oM 12)_|_C2202_|_C23 oN1N>

BoB; BB, BoB» BoB1 B>

H3 = (¢3¢ + ¢3; NoN2B1 /n3) - [n3/p3]1,

Hy = (c49 + c4y NoN2 By /ng + c4, NoN2 /ng) - [na/p4].

Hy = (c2 + 2, ( ) - [BoB1B2/pa1,

The problem partitioning that minimizes estimated makespan is defined as
argminBO)Bl’Bz)pl’pz,p%pwl],nm4 H, + H, + H3 + H4. With traditional cost mod-
els, this would require trial-and-error exploration of a /0-dimensional search space.
Using our approach, we can again leverage Lemma 2 to derive optimal settings for all
parallelism degrees and task numbers. Hence the optimization problem simplifies to

argmin H| + Hp + H3 + Hy. 3)
By, By, B>

This reduces optimization cost by orders of magnitude, from search in 10 dimensions
to 3 dimensions. (Note that optimization cost is linear in the total number of linear
pieces, across all rounds.)

5 Model training

Recall the basic approach to model training as introduced in Sect. 2.1: A suite of
profiling benchmarks is executed on the cluster, producing a labeled set of training
records. Each record is a tuple of values for the model variables (input, output, com-
putation, number of tasks), and its label is the corresponding observed makespan. The
values of the B-parameters are determined from the labeled data using the standard
least squares approach. While this follows standard machine learning practice, there
are a few subtleties in the specific context of our problem.

Representative training data Mainstream supervised learning methods, including
linear regression, assume that training data is drawn from the same distribution as the
“unseen” data, i.e., inputs for which the model will be used to predict the label. For
our makespan model, this means not only should the profiling benchmarks include
a variety of input sizes, output sizes, and computation costs, but they also need to
be executed for a variety of parallelism degrees. Furthermore, we propose on-the-
fly model fitting based on the following two observations: First, due to the small
number of variables and the simple model structure, it does not take more than a
few dozen training records to estimate the model coefficients. Second, we are dealing
with a relatively simple function surface. Makespan is (approximately) monotonically
increasing in input size, output size, and computation cost. Hence the best training
records for predicting the makespan of an unseen data point are those “closest” to it.
When predicting makespan for a given configuration at runtime, we therefore select
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Table 2 Cluster specifications

Name #Machines  #Cores per machine ~ #Workers =~ Memory per machine (GB)  Software

9h36 10 4 36 8 Hadoop 1.2
2h24 3 12 (virtual) 24 47 Hadoop 2.4
20h160 21 8 160 64 Hadoop 2.4
7hl4 8 2 14 8 Hadoop 1.2
Emr X X+1 1 (virtual) X 3.75 Hadoop 2

6s12 7 2 12 8 Spark 1.6.1
Emrl2s 7 2 (virtual) 12 7.5 Spark 1.6.1

the 30 most similar training records and determine the B-coefficients on-the-fly from
these 30 training records. On-the-fly model fitting takes only milliseconds.

A surrogate measure for makespan In a distributed execution, determining start
and end time of a round requires careful measurement and solid understanding of
system-internals. (Notice that this is a challenge for the system admin, not for users
and application developers!) On the other hand, it is fairly straightforward to mea-
sure running times of individual tasks. We therefore are interested in exploring if our
makespan models are still usable if actual makespan measurements in the training data
are replaced by a surrogate measure based on individual task running times. In partic-
ular, for the homogeneous-task case we propose as a surrogate measure the product
of number of task waves [n/p] and average task running time. Our experiments in
Sect. 6.2 show, that it indeed works very well.

Determining the value of C,, Values for input size Z of a round, as well as total input
size I, output size O,,, and number of tasks t,, on the most loaded worker are easy to
observe during benchmark execution. For computation cost C,,, we have to apply the
user-provided function to the observed variables the function depends on. Consider
an operator where a partition’s computation complexity is n logn for input of size n.
If the most loaded worker received two partitions whose input sizes are n| and n»,
respectively, then we record C,,, = nylogn| + ns logn,.

Simpler model for collapsed terms Recall from the analysis of sorting and matrix
product, how model terms collapse when variables are expressed by the same function.
To exploit this, one can fit a model in the low-dimensional space. This enables use of
smaller training sets.

6 Experiments

We implemented all algorithms in Hadoop MapReduce or Spark, and conducted
experiments on eleven different systems with diverse properties. They include in-
house clusters (9h36,2h24, 6512, 7h14), a research cluster (20h160) provided
by CloudLab [32] and EMR clusters with various sizes (EmrX, where X =
10, 20, 30, 40, 50, and Emr12s) on Amazon Web Services. For details see Table 2.
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For simplicity, in most experiments on Hadoop, the number of map tasks is left at
the default value, i.e., total map input size divided by Hadoop Distributed File System
(HDFS) block size. Only for small data sets whose size is smaller than the product
of desired parallelism degree and HDFS block size, we set the number of map tasks
equal to the desired parallelism degree.

The design of the profiling benchmark for model-parameter fitting is an open chal-
lenge. For applications where the same queries are periodically re-executed, e.g., social
network analysis as the network evolves, it would be beneficial to execute a specialized
benchmark containing only those queries, and covering a narrow range of input and
output sizes based on current and near-future graph properties. On the other hand, for
an infrequently used custom operator, it might not be feasible to include it in the bench-
mark at all. Optimal profiling-benchmark design is beyond the scope of this paper.
For proof-of-concept of our approach, we need to show that for some “reasonable”
benchmark, the resulting model is effective for makespan optimization. Note also that
the system can collect free training data each time an operator is executed during data
analysis. Since join, sorting, and matrix product are common operators, it is reason-
able to assume that dozens of training records for them exist. In the experiments, we
then fit the collapsed models (e.g., H; = [n,/p,1(cr, + ¢/ N/n,) for reduce phase
of sorting as discussed in Sect. 4.3) to the training records from the same operator.
To avoid overly optimistic results, we ensure that there are no more than about 100
training records and they cover a wide variety of values for model variables. Further-
more, only simple synthetic data is used for profiling. This way predictions made for
other synthetic data distributions and for real data are a true test how well the model
extrapolates to distributions it has never seen before.

6.1 General model

We first study the general model (Eq. 2), applied to join and sorting.

Queries JOIN computes the full equi-join on the join key, emitting all result tuples.
JOIN-AGG computes an equi-join whose results are aggregated on-the-fly as they are
generated. (We compute the sum over a non-join attribute.) Only a single output tuple
is emitted for each join group. Sorting sorts a set of integers in increasing order.

Data For joins, we use both synthetic and real data sets. Zipf-n — z denotes a pair
of synthetic data sets with Zipf-distributed join attribute, with skew parameter z. If
the two inputs have different z, we include both, e.g., Zipf-5m-[1,0] indicates that one
data set has z = 1, the other z = 0. For real-world data sets, skew often falls between
0.25 and 1.0, where z = 0 results in uniform distribution. c1oud-5m denotes a pair
of real data sets containing 5 million tuples randomly sampled from a set of cloud
reports [12]. They are joined on latitude, which was quantized into 10 equi-width
bins to model a climate-zone based correlation analysis. ebird-all is another real
data set containing 1.89 million bird sightings, each with 1657 attributes describing
properties of observation event, climate, landscape, etc [22]. ebird-basic is the
same set, but with only the 953 most important columns. For both eBird data sets, we
compute the self-join on three Boolean attributes, capturing presence (yes or no) of the
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Fig.6 General model: predicted versus measured makespan. Both training (red dots) and test cases (green
triangles) are near the blue dotted perfect-prediction line (Color figure online)

top-3 most frequently reported bird species in North America. This was motivated by
correlation studies exploring habitat properties based on species appearance patterns.
These data sets cover a wide range of values of Z, I,,, and O,,. Specifically, for
JOIN, we have Z € [10%,2 x 10°], I,,, € [10%,5 x 10%]and Oy, € [9 x 107, 2 x 10°];
for JOIN-AGG, we have Z € [5 x 108,2 x 10''], 1,, € [2 x 108,4 x 10°], and
O, € [1010,5 x 10!1]. The profiling benchmark consists of 100 join queries (20
per parallelism degree; covering degrees 10, 20, 30, 40, and 50), executed on simple
synthetic data, each generated as follows. First, we draw a value for Z, I,,, and O,,
uniformly at random from the above ranges. Then we create a pair of join inputs with
the following properties: There are p different join keys such that the largest group has
input and output size I, and O,,, respectively. The other p — 1 join groups are equal
to each other in input and output per group, selected so that total input and output size
reach the target values. Despite being trained on these simple data distributions, the
makespan model is very accurate for the Zipf and the real data as discussed below.
For Sorting, we create data sets consisting of 100 million to 1.2 billion randomly
generated numbers of type Long (8 bytes per record) for training and testing on Emr X,
X e {10, 20, 30, 40, 50}. These data sets result in Z € [10%, 1.2 x 10°] and I,, =
O € [2x10°, 1.2 x 10%]. The profiling benchmark is generated as discussed for joins
by randomly drawing 50 configurations from the ranges (10 per parallelism degree).

6.1.1 Prediction accuracy

To test our approach, we apply it to real data and to synthetic data not used for
training. Figure 6 shows that our model can accurately predict makespan, for both
training and test data, and on both the local cluster 7h14 and in the cloud on Emr30.
Not surprisingly, the simpler sort operation is easier to predict. Relative error tends to
be around 1% and never exceeds 5%. For JOIN, the root mean squared error (RMSE)
for training and test data are 332.97 and 148.66, respectively. For JOIN-AGG, they are
157.27 and 158.67, respectively. For Sorting, they are 15.81 and 6.57, respectively.

6.1.2 Optimizing operator-specific parameters

We apply the general model to determine the optimal values of operator-specific param-
eters for Join and Sorting on Amazon EMR clusters consisting of virtual machines
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Fig. 7 Optimal operator-specific partitioning

with a single core each. To isolate the effect of these parameters, we set parallelism
degree and number of tasks to the number of partitions created based on the operator-
specific parameters.

For Join, more fine-grained partitioning increases Z, while it may or may not
decrease B2 1, + B30, + PaCp,. The challenge for the optimizer is to determine the
right tradeoff between these two factors. Figure 7a shows results for the Cartesian
product of two data sets, each containing 660, 000 tuples with 1000 integer attributes.
Our model predicted the best makespan for 12 partitions, and Fig. 7a indicates that
this indeed is the winning setting. Similarly, for Sorting, the model suggested to
use 50 partitions on all 50 workers, independent of input size. Figure 7b confirms that
this indeed minimizes makespan.

6.1.3 Safe pruning for distributed join

Figure 8 reports load and predicted makespan as Algorithm 1 greedily explores join-
group partitionings. Max load first decreases due to improved load balancing for
smaller partitions, quickly approaching average load. Hence Lemma 1 is very effective
in determining a safe stopping point beyond which no better makespan can be found.
In Figure 8a, in step 11, the average load per worker (blue dots) reaches 1.41 x 10°,
which is greater than the minimal max load (red dots) found before (1.40 x 10% in step
3). Hence it is safe to terminate the greedy algorithm in step 11. Similarly, in Fig. 8b,
the average load in step 51 (8.39 x 10%) surpasses the minimal max load (8.38 x 103
in step 30) and hence the greedy algorithm can safely terminate. Note that if the user
is satisfied with a partitioning within 10% of optimal, then Lemma 1 makes it possible
to determine that iterations can be terminated already after 16 steps.

Our experiments generally show that it is practical and efficient to use the safe
termination condition. Table 3 lists the number of extra steps (from the step where the
optimal partitioning was found) until safe termination was detected based on Lemma 1.
Note that 40 steps take only about half a second of computation time.
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for JOIN-AGG

Table 3 Additional steps after finding optimum, until safe termination

Data set Cluster # Extra steps Data set Cluster # Extra steps
ebird-all Th14 8 zipf-5m-[1,0] Th14 21
ebird-basic Th14 16 zipf-5m-[0.25,0] Th14 34
cloud-5m 7h14 37 ebird-all Emr50 6
zipf-5m-1.0 7h14 10 cloud-5m Emr50 35

6.2 Homogeneous-task model

The main purpose of these experiments is to provide a proof of concept that the
simplified homogeneous makespan model with a “small” number of linear pieces
is accurate enough to rank “good” above “bad” partitionings. In all experiments,
the piecewise linear model for a round had between 1 and 7 pieces. To explore the
feasibility of the easier-to-obtain surrogate makespan measure, we replaced in all
training records true makespan with the surrogate measure (Sect. 5). This makes the
model less accurate, but as our experiments will demonstrate, it is still effective for
makespan optimization.

6.2.1 Sorting

We present measurements on clusters 9h3 6 and Emr10. All piecewise models for
9h36 are partitioned into ranges (0, 18] and (18, 36] on parallelism degree. Parti-
tioning on task input and output size varies. We created 54 queries, each defined by a
data set and a number of waves for execution. Data sets are drawn from a pool of 15
sets, each with a cardinality selected randomly between 100 million and 2.7 billion,
containing random numbers of type Long (8 bytes per record). The number of waves
is selected randomly between 1 and 10. We randomly select 41 of these queries to fit
the regression-model parameters, while the other 13 are used for testing.

Figure 9 presents the relationship between input size and the value of H (Eq. 2).
The y-axis reports H computed from observed Z, O, and C. (Degree of parallelism
was set to the number of workers for all runs.) The dotted green line shows a piecewise
linear model fitted to the data.
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Fig.9 Sorting: measured value of H versus input size on 9h3 6 for Map (left) and Reduce (right) phase
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Fig. 10 Sorting: predicted versus measured value of H on 9h36 for Map (left) and Reduce (right) phase

Figure 10 compares predicted and measured values of H for map and reduce phase
of sorting on cluster 9h3 6. The red dots are for training cases, while the green triangles
are for test cases. All individual times and the overall trend are captured very accurately,
as the relative errors are mostly around 1%, and never exceed 5%. For map phase, the
RMSEs for training and testing are 0.98 and 1.16, respectively. For the reduce phase,
they are 3.29 and 1.81.

Table 4 shows that accurate estimation of H can still result in significant underes-
timation of makespan. This is caused by the use of the surrogate measure (number of
waves times average task time, instead of true makespan, for model training), which
does not capture delays caused by stragglers. However, this bias is consistent, allowing
the model to capture the trend correctly, no matter if all cores or only half of them is
used per machine. For large inputs, it identifies the I/O-related bottleneck: doubling
the number of cores used per machine results in virtually no improvement of makespan
when data size reaches 1.6 billion records.

6.2.2 Matrix multiplication

All models are partitioned into parallelism-degree ranges based on multiples of the
number of machines in the cluster; partitioning on input and output size varies. The
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Table 4 Degree of parallelism versus measured and predicted makespan on 9h36

Number of records Degree of parallelism = 18 Degree of parallelism = 36
True (s) Prediction True (s) Prediction
1.17E4+9 790 601.96 698 564.21
1.26E+9 835 657.36 723 629.59
1.62E+9 1056 842.00 1050 833.66
1.80E+9 1146 928.18 1112 926.13
2.43E+49 1558 1254.39 1524 1288.04
2.70E+9 1751 1408.24 1741 1465.02
10 50 10 10
g 8o | y=x Baog | y=x - g 8oj| y=x g sl y=x
g 60 gao g 60 g 60
5 40 520 . 5 40 5 49 s
8 20 210 ! o 7 82 7
3 2 0 O P \® 3 AR 0 40 (O ® 3 2 0 O P \® 2 0 O P
ground truth (seconds) ground truth (seconds) ground truth (seconds) ground truth (seconds)
(a) M-Job: Map (b) M-Job: Reduce (¢) A-Job: Map (d) A-Job: Reduce

Fig. 11 Matrix product: predicted versus measured value of H on 9h36. The test cases (red dots) are near
the perfect-prediction line (blue dotted line) (Color figure online)

training set consists of 104 problem instances, covering 12 different matrix-size com-
binations (square matrices from 10k x 10k to 30k x 30k and also extreme rectangular
ones up to 200 x 4 x 10°), each with 3 to 20 (B, B;, B2)-combinations. We randomly
pick the matrix sizes and (By, By, By)-combinations in the above ranges. We then test
the model on 57 independent problem instances, drawn from the same distribution. As
Fig. 11 shows, predicted and true value of H are again very close. The training RMSEs
for the four rounds (2 MapReduce jobs) are 6.99, 9.78, 1.69 and 6.82, respectively;
the testing RMSEs for the four rounds are 4.95, 5.86, 1.11 and 3.00, respectively.

Like for sorting, our model underestimates true makespan due to the use of the
surrogate measure, but can still correctly separate “good” from “bad” partitionings.
In all cases our approach would find a near-optimal configuration. Table 5 confirms
this for both synthetic and real data sets (from the UCI Machine Learning Repository
[20]). There our technique is applied to the step where the data matrix is multiplied
with its own transpose. Table 6 confirms that this observation also holds for Spark.

Note that for both real data sets (Table 5d, e), our model correctly discovers that
setting (By, Bi, B2) to (1, 18, 1) results in lower makespan than (1, 36, 1). We con-
firmed that due to I/O bottlenecks, it is better to only use half of the available cores
per machine, even though round 2 performs a huge number of arithmetic operations
(more than 11 x 10 for the Census data).

7 Related work

Structured cost models that capture execution details are essential for query optimiza-
tion in relational DBMS [24], and they can be highly accurate when tuned [33]. Recent
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Table 5 Ranking quality: predicted versus true makespan (sec) for matrix product (Hadoop MapReduce,
(a)—(c) are synthetic data, (d) and (e) are real data)

By, By, By Prediction Ground truth

Makespan Rank Makespan Rank

(a) 15,000 x 15, 000 matrices on 9h36

6,1,6 305.40 1 400.00 1
3,3,4 330.87 2 434.00 2
4,1,4 345.89 5 440.00 3
3,3,3 350.39 7 445.67 4
3,4,3 333.55 3 448.00 5
51,5 356.48 9 452.00 6
3,2,3 344.69 4 453.00 7
2,6,3 348.85 [§ 471.00 8
4,2,4 353.48 8 479.00 9
2,9,2 385.02 11 485.00 10
2,6,2 380.85 10 497.00 11
2,4,2 403.84 13 505.00 12
2,8,2 410.55 14 525.00 13
2,7,2 446.67 15 548.00 14
4,1,8 401.43 12 556.00 15
2,2,2 614.17 16 656.00 16
1, 18,1 638.41 17 713.00 17
1,36, 1 941.19 18 1,290.00 18
(b) 15,000 x 15, 000 matrices on 2h24
4,1,6 247.93 1 325.03 1
2,4,3 267.90 4 366.53 2
2,3,4 257.58 3 384.64 3
3,2,4 248.79 2 388.53 4
2,6,2 290.78 5 408.92 5
1,12,2 356.74 6 455.77 6
1,24, 1 765.48 7 574.52 7
(c) 10, 000 x 60, 000 matrices on 20h160
4,10,4 124.57 1 186 1
4,8,5 128.14 2 204 2
2,20, 4 132.53 3 205 3
4,5,8 134.07 4 205 3
2, 8,10 137.51 5 206 5
1,20, 8 141.89 6 211 6
12, 1,12 171.08 7 238 7
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Table 5 continued

By, By, By Prediction Ground truth

Makespan Rank Makespan Rank

(d)68 x 2458285 matrices (1990 US Census data) on 9h36

1,18, 1 30.93 1 95.00 1
1,36, 1 37.97 2 107.25 2
3,2,3 59.05 4 127.00 3
2,9,2 51.12 3 128.5 4
3,4,3 64.20 5 132.25 5
6,1,6 85.72 6 145.00 6
(e) 481 x 191779 matrices (KDD Cup 1998 data) on 9h36
1,18, 1 24.12 1 94 1
1,36, 1 30.89 2 103 2
3,2,3 39.19 4 109 3
2,9,2 37.43 3 112 4
3,4,3 44.61 5 121 5
6,1,6 48.37 6 144 6

work has shown that DBMS-style optimization can also be applied to other workloads,
e.g., gradient descent computation that commonly occurs in machine learning [16]. Li
et al. [18] rely on DBMS optimizers, and hence low-level cost models, to determine
asymmetric data partitioning for heterogeneous clusters. When applied to homoge-
neous clusters of equally capable machines, e.g., on the Amazon cloud, these models
assign the same input share to each worker, but do not optimize the partitioning param-
eters discussed in this article.

DBMS cost models motivated similar approaches for MapReduce and other dis-
tributed data analysis systems [14,21,29,31,34]. Simplified cost models for Hadoop
and Spark systems are also proposed [10,11], but they focus on the impact of adding
more worker machines, ignoring the impact of operator-specific partitioning parame-
ters. Our work is orthogonal to research on lowering the cost of MapReduce programs
by minimizing the number of rounds [9,17].

As an alternative to structured cost models, blackbox-style machine learning tech-
niques were explored for a variety of performance prediction problems [2,5,6,8,13].
For all previous cost models, the effect of partitioning parameters on makespan is
relatively complex, hence makespan minimization would have to rely on trial-and-
error style exploration of possible parameter settings. For dense matrix multiplication,
this corresponds to a 10-dimensional space of (By, By, B2, po, P1, P2, P3, 11, N3, N4)
combinations. (Note that Ernest [29] could possibly derive optimal settings for all
pi, i = 0,...,3, reducing complexity to 6 dimensions.) In contrast, our approach
sacrifices some prediction accuracy to simplify model structure. This enables ana-
Iytical derivation of optimal settings for most parameters, reducing complexity to 3
dimensions for dense matrix multiplication.

Shi et al. [25] identify four key system parameters to optimize MapReduce
makespan. While similar in spirit to our approach, they do not include operator-specific
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Table 6 Ranking quality:

predicted versus true makespan
(in seconds) for matrix product Makespan Rank Makespan Rank
(synthetic data, Spark)

Bg, By, B Prediction Ground truth

(a) 800 x 80, 000 matrices on 6s12

2,2,3 73.81 1 88.8 1
2,3,2 74.08 3 90.67 2
1,12, 1 73.88 2 96 3
1,3,4 87.84 4 101 4
1,6,2 100.10 7 101.4 5
1,4,3 96.79 6 104 6
3, 1,4 133.95 9 109.5 7
1,6,1 92.80 5 113 8
2,1,3 154.30 11 134 9
1,2,3 134.22 10 141 10
1,3,2 131.48 8 154 11
(b) 6000 x 6000 matrices on Emr12s
3, 1,4 144.73 1 149.5 1
2,2,3 152.50 2 152 2
2,3,2 156.63 3 162 3
1,2,6 171.79 5 170.5 4
1,3,4 166.27 4 171 5
1,4,3 180.81 6 173.5 6
1,6,2 184.95 7 195 7
2,1,3 251.14 9 254 8
1,2,3 268.33 8 268.5 9
1,3,2 277.20 11 277 10
1,1,6 266.92 10 304 11
1,6,1 365.17 12 362 12

partitioning parameters in their analysis. And due to the complexity of the model, there
are no results comparable to our Lemmas that enable more efficient optimization for
the key parameters.

We use dense matrix multiplication to showcase model design and makespan opti-
mization for an analytics operator with a demanding I/O and CPU profile. Previous
work explored a variety of performance-related aspects for matrix multiplication on
parallel architectures. This includes load balancing [28], minimizing communication
cost [1,4,15,26], and optimizing for memory hierarchy [7,27].

8 Conclusions

Starting with the goal of minimizing makespan for distributed data-intensive compu-

9

tation, we set out to identify the “simplest possible”, “sufficiently accurate” model
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to predict makespan of data analytics operators. To this end, we proposed abstract
models that are piecewise linear functions depending only on input, output, and com-
putation complexity. Our approach has two main benefits. First, it simplifies tying
problem-partitioning parameters to model variables (input, output and computation)
for user-defined operators, e.g., programs written in MapReduce or Spark. Second, we
showed that the linear structure can be exploited for more efficient optimization algo-
rithms. It enabled pruning of values from the optimization-parameter search space
and even a significant reduction of search space dimensionality (for homogeneous
tasks). For instance, optimization complexity was reduced from a search process in
ten dimensions to only three for matrix product; for sorting the optimal solution was
directly obtainable in closed form.

Our experiments indicated that a small number of pieces achieve sufficient predic-
tion quality, enabling us to find near-optimal problem partitionings very efficiently.
In future work, we will explore tuning of partitioning parameters along with system
parameters external to user programs, by integrating our ideas into optimizers like
Starfish [13].
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